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Abstract—The stability of two horizontal porous medium layers with a conductive partition is analysed
by a linear stability theory. The upper cooled surface and the lower heated surface are taken to be
isothermal and both are impermeable. The resulting eigenvalue problem is solved by a Galerkin method. The
parameters affecting the stability limit are the ratio of two porous layer thicknesses, the ratio of partition
thickness to total porous layer thickness, and the ratio of porous medium conductivity to partition thermal
conductivity. Results show the system is most stable when the partition is located in the middle. In addition,
as the partition thickness increases or the partition conductivity decreases, the system becomes more stable.

1. INTRODUCTION

NATURAL convection in a porous medium between
two parallel plates with uniform heating from below
is of interest to physicists, geophysicists and engineers.
There are several important technical applications, for
example, porous insulation development and geo-
thermal energy conversion. A large number of theor-
etical and experimental studies on this subject has
been made, see the review paper by Cheng [1]. The
early work by Lapwood [2] determined the conditions
for the onset of convection in a porous medium for a
horizontal layer with isothermal boundaries and with
impermeable and permeable upper surfaces. Critical
Rayleigh numbers Ra,,;, = 4n?(39.478) and 27.1 were
obtained, respectively. The onset of natural con-
vection in a porous layer under other boundary con-
ditions has been discussed by Ribando and Torrance
{3]. The critical Rayleigh numbers are 27.1 and 17.7
for a porous layer with a uniform heat flux from below
and with impermeable and permeable upper surfaces,
respectively. The effect of horizontal temperature
gradients on the onset of free convection was inves-
tigated by Weber [4]. The analysis showed that the
critical Rayleigh number is always higher than 472

The convective heat transfer in fluid saturated
porous beds either heated from below or heated by
distributed sources was experimentally investigated
by Buretta and Berman [5]. The critical Rayleigh num-
bers for the onset of convection are estimated as 38.0
for heating from below and 31.8 for distributed heat
sources. The experiment by Close et al. [6] also con-
firmed 4n” as the critical Rayleigh number.

This paper is concerned with the onset of natural
convection in two horizontal porous medium layers
with a conductive partition. The upper cooled surface
and the lower heated surface are taken to be
isothermal, and the fluid is governed by Darcy’s law.
This type of problem for the porous medium has not
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been studied in the literature. This has motivated the
present investigation. It should be noted that the cor-
responding problem for a viscous fluid has been
recently analysed by Catton and Lienhard [7]. The
analysis of our paper is closely paralleled in ref. [7];
however, there are some differences, arising from the
governing equations and the boundary condition on
the velocity that differ in the two problems. As might
be expected, the results for a porous medium resemble
those for a viscous fluid. Linear stability theory is used
and the resulting eigenvalue problem is solved by a
Galerkin method. The effects of the thickness,
location and thermal conductivity of the partition
on the onset of convection of two porous layers are
examined.

2. MATHEMATICAL ANALYSIS

Figure 1 represents the physical model and the coor-
dinate system. By applying Darcy’s law and the Bous-
sinesq approximation, the governing equations for the
physical model to be studied are

du Ov
a'ﬂ‘@:O 0))
du dv  KgpoT
T Ty ex @
or,_oT, ot (FT o1\,
"at+“ax+”ay‘°‘° 8):2‘%5—)1T 3
p = poll —B(T—Ty)] “)

where o is the heat capacity ratio of the saturated
porous medium to that of the fluid, «, the effective
thermal diffusivity of the medium, K an empirical
constant called permeability and g the fluid coefficient
of volume expansion. Equations (1)-(4) must be sat-
isfied in both porous layer regions.
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A ratio of partition thickness to total porous
layer thicknesses, L,/(L,+L;)

a dimensionless disturbance wave number,
Q2n/A)L

B ratio of two porous layer thicknesses,

Ly/L,

gravitational acceleration

effective porous media thermal

conductivity

partition thermal conductivity

K permeability

L thickness of layer

Ra  Darcy’s Rayleigh number, defined in

equations (15)

overall Rayleigh number,

KgB(T\—T)(L\+L,+Ly)/ay

T temperature

T. temperature of the cold upper surface

T, temperature of the hot lower surface

u,v Darcy’s velocity in the x- and y-directions

vV dimensionless amplitude of the fluid

velocity disturbance

Cartesian coordinates

Y dimensionless y-coordinate.

(ﬁ» Q

=~

o

NOMENCLATURE

Greek symbols

o,  effective thermal diffusivity of the medium

B fluid coefficient of volume expansion

0 dimensionless amplitude of the
temperature disturbance

A disturbance wavelength

v fluid kinematic viscosity

p fluid density

o heat capacity ratio of the saturated porous
medium to that of the fluid.

Subscripts
k variable or parameter in porous region 1
or2
p partition
0 reference state quantity for the Boussinesq
approximation.
Superscripts
! disturbance quantity
* dimensionless quantity

base state solution.

The horizontal velocity u can be eliminated by
cross-differentiating between equations (1) and (2),
leading to

d*v 0  Kgpo’T

In the partition we have

oT o*T  o*T

¥ o, (W + ay—2> ©)
where a, is the thermal diffusivity of the partition. The

ox2 oyt v ax* ) boundary conditions for these equations are
Cooled surface '1‘C
¥, Jpd g g g g g i
Region 2 Lorkg
Y
T_y; T T T IT T TI T TITTrrrrrriiyrri
X partition Lp’kp
-y, JL L g g P i

Region 1

l

Y T7777I7IIIIIIIIII 7777777777777 7777777777

Heated surface Th

FiG. 1. The physical model and coordinate system.
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v(x, —y3) = v(x, —yy) = v(x,y,) = v(x,y;) =0
T(x’ _.Y3) = Ths T(x,)’z) = TC (7)

together with the matching of temperature and heat
flux at the surfaces of the partition

oT, oT

Y= =Y TI = Tpa _keTyx _kpa—yp' (8)
oT. oT,

Y=Y Tz = Tps _kca—yz = "'kpa—yp' (9)

The base state sclutions for velocity and temperature
are

V=0 (10)
T=T— Th_Tc }’+J’3
o ECEE 2.3 N
L, kPL,
-y -y (1)
- T,— T, k, L
Tp=Th_ Lh g k (1 fc__l_(_g(yz.}’l))’
1 2, Fp Ke P Bp P
( Ll kPL‘)
-nsysy (12)
- T, —T,
T2=Th— h c
iz bk
L "k L,
kc Lp Lz(J")"l)
MLkt L )

13

To perform a linear stability analysis, we first per-
turb the base state solutions and write

T(x,p,0) = T+ T'(x,p,1)

N SYSy.

v(x,y,t) = 04+0°(x, p, ). (14)
On introducing the following transformations:
y;‘—%p, xk*=Lik, xp=Lip,
= ZE%&;, Tr = {%,
T = AT;:" Ra, = @i—?‘fﬁ (15)

note that k = 1,2 where AT is the temperature differ-
ence across porous region k, k = 1,2 and Raq, is the
individual Darcy’s Rayleigh number. Then equations
(2)-(6) are linearized, using standard procedures for
the stability analysis. Thus, we find

T |, OTF O'T}

—p¥ = 2
drr K T At o

(16)
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g’% 0 T%‘ = a_TP: (18)
axy® Coypt oy

Assuming solutions to equations (16)—(18) are of
the form

v = Vi(Y, )ebi oD
T = 0,(Y,)e oD
T} = 0,(Y,)es % (19

where a is the wave number of the disturbance in the
x-direction, s the growth rate, and ¥ and 6 amplitudes
of disturbances in the vertical velocity component and
the temperature profiles, respectively. Substituting
equations (19) into equations (16)—(18) and setting
s = 0 for neutral stability, we have:

for region 1

(D} —a})V, = —a} Ra, 6, (20
(Di—ai)8, = ~V, 2n
Y, =2 1 1.
1= +‘E‘l"‘2 and —-3<7Y,<3;
for region 2
(Di—a3)V, = —aj Ra, 0, (22)
(Di—a3), = -V, (23)
Y=y —2'—1 and ~1<7Y,<i;
2 = I 2 1R %735
2
for the partition
(Di—a})8, =0 (24)
Y,,=%- and —-3i<Y, <}
P

where D, denotes d/dY,, k = 1,2,p.
The wave numbers are all related to a common
disturbance wavelength

a, =2nL[i, a,=2nL,/A, a,=2zrL,/A
25
The boundary conditions for equations (20)—(24) are
V(£ =0,(-2)=0,(3) =0, k=12
and
8,(H) =0,(—1), BO(—1) =0,

ke
A(1+B)=D161(2) = Dyfy(—2)
P

A +B)-§ED292(— 1) =Dy0,(3) (26)
P

where A = L,/(L,+L,) is the ratio of the partition

thickness to the total porous layer thickness and

B = L,/L,is the ratio of two porous layer thicknesses.

Equations (20)-(24) with equations (26) form an

eigenvalue problem for Ra, and Ra, with 4, B and
k./k, as parameters.



996 J.-Y. JANG and W.-L. Tsai

3. NUMERICAL METHOD

The method of solution is that of Galerkin as
described in Catton and Lienhard [7]. First, V,
(k = 1,2) are expanded in terms of orthogonal func-
tions which satisfy the boundary conditions on V.
We assume the velocities have the form

Ve =Y ANHY), k=12 27
where
. cos(inY), i=1,3,5...
VitY) = \enGny), i=246... @8

The corresponding temperature profiles 6, can be
obtained by substituting equation (27) into equations
(21) and (23)

0, = AL (Y)+ D" cosh (g, Y,) + E* sinh (4, Y}.)

(29)
where
— inY,), i=1,375...
- 2+a?cos(m ©)s ,3,
o= T (30)
msin(inYkL l=2,4,6

The disturbance temperature 0, in the partition is
obtained directly from equation (24)

6, = Mcosh(a,Y,)+Nsinh (a,Y}). @31

The constants M, N, D* and E* are found by
satisfying the boundary conditions on @ at the heated
and cooled surfaces, and the matching conditions at
the partition. The result is given as

Hk(Yk) = ZAde)fk(Yk)—f— ZA{(DP(YU
note that

{j=2 ask =1 32)

j=1 ask=2

where ®% and ©®¥ are the same as those given in
Catton and Lienhard [7]. The derivations are quite
lengthy and are omitted here. The details are given in
Tsai [8].

Substituting the derived expression for 6, and the
assumed series for V, into equations (20) and (22)
and then weighting and integrating over the regions
(k = 1,2) yielding the following matrix equation:

(33

1/2
Ezj l///l(Dlz_a%)l/Iilth
—n2

Table 1. The critical Rayleigh number of region 1, Ra|,
for different integration interval points » with B = 1.0,
kefk,=10and N=6

n
A 11 21 31 41 51
0.01 274017 27.4036 27.4037 27.4037 27.4037
0.1 29.2496  29.2479 29.2479 29.2479  29.2479
0.3 31.5995 31.5914 31.5914 31.5914 31.5914
1.0 329077 329015 329014 329015 329015
- f172
J= Yo' dY,,
J-1/2
- ~1/2
N= !/I/'](Dil : dy,,
J-1/2
- 172
M= l/zl/ff(Di—a%)d/?de,
i 172
I= Y 0! 2dy,,
J-1/2
- *1/2
K= 20224Y,. (34)
J-1/2

Noting that Ra,= B*Ra, and a3 = B%a} and
applying the requirement for non-trivial solutions, i.e.
the determinant of the first matrix of equation (33) is
zero, we obtain

This has the form of a generalized eigenvalue problem,
and, for a specified a,, Ra, is the eigenvalue. The
choice of an N-term approximation for velocity yields
a 2N x 2N matrix, the minimum eigenvalue of which
is the desired Rayleigh number. To find the critical
Rayleigh number for given values of 4, B and k. /k,,
first, the values of Ra, are calculated for several
selected values of a,, and then a curve fitting is
established through these points, and finally letting
dRa,/da, = 0 to find the critical Rayleigh number.

To check the numerical accuracy, we compute some
cases for different shape function terms N and interval
points n when equations (34) are integrated using
Simpson’s 3/8 rule. The results for the critical Ray-
leigh number of region 1, Ra,, are presented in Tables
1 and 2. It is seen that the results are accurate to at
least three significant digits when a six-term shape
function is used in conjunction with 21 point
Simpson’s 3/8 rule of the integral.

4. DISCUSSION OF RESULTS

The critical Rayleigh numbers Ra,, Ra, and Rar
are presented in Table 3 for 001 <A4<10,
0.125 € B< 1.0, and 0 < k. /k, < 100, where
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Table 2. The critical Rayleigh number of region 1, Ra,, for
different shape function terms N with B = 1.0, k./k, = 1.0

and n = 21
n
A 4 6 8
0.01 27.4081 27.4036 27.4031
0.1 29.2483 29.2479 29.2477
0.3 31.5923 31.5914 31.5910
1.0 329122 32.9015 32.9011

RaT = KgB(Th - Tc)(L] +Lp+L2)/aev

is the overall critical Rayleigh number. The critical
Rayleigh number of either layer is related to Ra, by

Rar = Ra,(1+ B)*(1+A)(1 + A(k. [k,))
and
Ra, = Ra, B

Results are given only for B < 1 because of the prin-
ciple of symmetry. Calculations were also performed
for B = 2, 4 and 8, and the results were in good agree-
ment with those for B = 0.5, 0.25 and 0.125. This
confirms the principle of symmetry.

In Table 3, k./k, = 0 corresponds to the case when
the partition is a perfect conductor, i.e. isothermal,
and there is no temperature gradient in it. This reduces
to the classical Bénard problem for a porous medium.
The computed Ra, is 39.477 as compared to the exact
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value of 47? (39.478) as obtained in ref. [2]. When
k./k, — 0, as indicated by Catton and Lienhard [7]
for a viscous fluid, the boundary condition at the
partition approaches that for a constant heat flux. We
calculated Ra, for k. /k, = 10°, 10° 107 with 4 = 1.0
and B = 1.0 and obtained Ra, = 27.1654, 27.1652,
27.1651, respectively, which are in good agreement
with the value of 27.16 as obtained in ref. [3]. These
comparisons also confirm the accuracy of our numeri-
cal computation.

Figures 2(a)—(d) show the variation of Ra; as a
function of conductivity ratio k. /k, for 4 = 0.01, 0.1,
0.3 and 1.0, respectively, and for various values of B.
It is seen that, for a given k./k,, the porous layer is
most stable when the partition is located in the middle.
The rapid drop in Ray as k./k, increases from zero,
results from decreasing damping of the thermal dis-
turbance in the partition. This drop is smoother for
larger values of A, since a thicker partition provides
more damping for the disturbance. This trend is also
observed for a viscous fluid [7]. As k. /k, increases, for
a given B, the system becomes more stable because
the thermal conductivity of the partition decreases,
which in turn decreases the temperature gradient over
each porous layer (for a fixed value of T, — T.).

Figures 3(a)-(d) illustrate the variation of Rar as a
function of the conductivity ratio k. /k, for B = 0.125,
0.25, 0.5 and 1.0, respectively, for selected values of
A. It is shown that, for a given conductivity ratio,
the system becomes more stable as the ratio of the

Table 3. The critical Rayleigh numbers Ra,, Ra, and Ra;

B=0.125 B=1025 B=05 B=1.0
k./k, Ra, Ra, Rar Ra, Ra, Rar Ra, Ra, Ra; Ra, Ra, Ray
A =0.01
0.0 39.48  0.62 50.47 3948 247 62.30 39.48 9.87 89.73 3948 39.48 159.51
0.2 36.22  0.57 46.39 3484 218 55.10 33.38  8.35 76.01 2829 28.29 114.53
1.0 3594 0.56 46.40 3447 215 54.94 32.83 8.21 75.34 2740 2740 111.82
5.0 35.16  0.55 47.19 33.84 212 56.08 3231 8.08 77.09 27.21 2721 115.44
10.0 3438 0.53 48.35 3324 208 57.70 31.85 796 79.63 27.19  27.19 120.83
100.0 29.76  0.47 76.10 2945 1.84 92.95 29.04 7.26 132.00 27.17 2717 219.51
A=0.1
0.0 39.48 0.62 54.96 3948 247 67.86 3948 9.87 97.72 39.48 39.48 173.72
0.2 36.78 0.57 52.24 36.27 227 63.60 36.07 9.02 91.05 3378 33.78 151.60
1.0 3472 0.54 53.18 33.84 212 63.98 32.87 822 89.51 29.24 29.24 141.50
5.0 31.25 049 65.26 3076 1.92 79.30 30.19  7.55 112.07 2762 27.62 182.34
10.0 29.83  0.47 83.07 29.53 1.85 101.53 29.16  7.29 144.32 2740 27.40 241.12
100.0 27.54 043 42179 27.51 1.72  520.04 2745 6.86 747.40 27.19 27.19 131596
A=03
0.0 39.48 0.62 64.94 39.48 247 80.20 3948 9.87 115.48 3948 39.48 205.31
0.2 37.21  0.58 64.89 37.14 232 79.97 37.17  9.29 115.26 36.64 36.64 201.99
1.0 3357 0.52 71.80 33.12 2.07 87.45 3291 8.23 125.16 31.59  31.59 213.58
5.0 29.52 046 12141 29.36 1.84  149.12 29.19  7.30 213.44 28.32  28.32 368.22
10.0 28.50 0.45 187.57 28.41 1.78  230.85 28.30 7.08 331.13 2777 27.77 577.55
100.0 27.32 043 1393.37 27.31  1.71 1719.58 2729 6.82 2474.93 27.23 2723  4389.12
A=10
0.0 3948 0.62 99.94 3948 247 123.38 39.48 9.87 177.67 39.48 39.48 315.87
0.2 3735 0.58 113.44 37.35 233 140.05 3735 9.34 201.67 37.34 3734 358.44
1.0 3293 0.51 166.72 3293 2,06 20580 3293 823 296.35 3290 3290 526.46
5.0 2896 045  439.88 28.96 1.81 542.96 2896 7.24 781.75 28.93 28.93  1388.58
10.0 28.13 044 78322 28.13 1.76  966.82 28.13  7.03 1392.07 28.11 2811  2473.37
100.0 2727 042 6971.36 2727 1.70 8606.47 27.27 6.82 12393.22 27.27 27.27 22030.59
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FIG. 2(a). The effect of partition location and conductivity upon the stability of the porous layers for
A4 =0.01.
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F1G. 2(b). The effect of partition location and conductivity upon the stability of the porous layers for
A=01.
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FIG. 2(c). The effect of partition location and conductivity upon the stability of the porous layers for
A=023.
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F1G. 2(d). The effect of partition location and conductivity upon the stability of the porous layers for
A=10.
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F1G. 3(a). The effect of partition thickness and conductivity upon the stability of the porous layers for
B =0.125.
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FiG. 3(b). The effect of partition thickness and conductivity upon the stability of the porous layers for
B =10.25.
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F1G. 3(c). The effect of partition thickness and conductivity upon the stability of the porous layers for
B=0.5.
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F1G. 3(d). The effect of partition thickness and conductivity upon the stability of the porous layers for
B =1.0.
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partition thickness to total porous layer thickness, A4,
increases. As indicated before, this is due to the fact
that a thicker partition can greatly damp the dis-
turbances. It is also seen that, for 4 = 0.01, i.e. thinner
partition, the overall stability is not significantly
affected by the partition conductivity. However, the
overall stability is profoundly dependent on the par-
tition location as seen in Fig. 2(a).

5. CONCLUSION

The stability of the onset of thermal convection of
two horizontal porous medium layers with a con-
ductive partition has been investigated using the linear
stability theory. The qualitative results are similar to
those for a viscous flow in the absence of a porous
medium. It is shown that the system is most stable
when the partition is located in the middle. In
addition, the system is much more stable than that
without partition even though the partition is quite
thin. For example, for 4 =001, B=1.0 and
k.Jk, =1, the overall critical Rayleigh number is
111.82, which is much larger than 4z for a system
without partition. Results also indicate that as the
partition thickness increases or the partition con-
ductivity decreases, the system becomes more stable.

J.-Y. JanG and W.-L. Tsai

The results presented in this paper provide useful
information for the analysis of insulating layers.
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INSTABILITE THERMIQUE DE DEUX COUCHES POREUSES HORIZONTALES AVEC
UNE PARTITION CONDUCTIVE

Résumé—1La stabilité de deux couches poreuses horizontales avec une partition conductive est analysée
par une théorie linéaire de stabilité. La surface supérieure froide et la surface inférieure chaude sont
isothermes et imperméables. Le probléme de valeurs propres est résolu par une méthode de Galerkin. Les
paramétres agissant sur la limite de stabilité sont le rapport des épaisseurs des deux couches, le rapport de
Pépaisseur de partition & 'épaisseur totale poreuse et le rapport de la conductivité du milieu poreux 4 celle
de la partition thermique. Les résultats montrent que le systéme est plus stable quand la partition est située
au milieu. En outre, lorsque P'épaisseur de partition augmente ou lorsque la conductivité de partition
décroit, le systéme devient plus stable.

THERMISCHE INSTABILITAT ZWEIER HORIZONTALER POROSER SCHICHTEN MIT
WARMELEITENDER KONTAKTZONE

Zusammenfassung—Es wird die Stabilitit zweier horizontaler poréser Stoffschichten mit wirmeleitender
Kontaktzone durch ein lineares Stabilitdtsverfahren untersucht. Die gekiihlte obere Fliche und die beheizte
untere Oberfliche werden als Isothermenflichen angenommen, wobei beide Fliachen stoffundurchlissig
sind. Das resuitierende Eigenwertproblem wird durch ein Galerkin-Verfahren gelost. Die Stabilitdtsgrenze
wird durch die folgenden Parameter beeinfluBt : das Verhaltnis zweier pordser Schichtdicken, das Verhdltnis
von Kontaktschichtdicke zu gesamter pordser Schichtdicke und das Verhdltnis der Wirmeleitfahigkeiten
von pordsem Medium und Kontaktschicht. Es wird gezeigt, daB bei mittiger Lage der Kontaktzone die
besten Systemstabilititen zu erwarten sind. Zusitzlich wird das System mit zunehmender Kontakt-
schichtdicke oder abnehmender Wirmeleitfdhigkeit der Kontaktzone stabiler.
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TEIJIOBAS HEYCTORYUBOCTH ABYX FOPH3OHTAJIBHBIX [TOPUCTBIX CJIOEB C
TMPOBOAAMEN NEPEIOPOOKON

Annotamas—C NOMOMIBIO TEOPHH JHHeHHOK yCTORYABOCTH aHANM3IUPYETCH YCTOHYMBOCTH IABYX rOpPH-
30HTaJIbHBIX NOPHCTHIX CAOEB C NpOBOAAIEH meperopojkod. BepxHsa oxiaxaaeMas H HIDKHAR Harpe-
BaeMas NOBEPXHOCTH NONAraloTCH H3OTCPMHUYCCKHMH M HempoHHnaembiMu. IlonmyyenHas 3anzava ua
coOCTBEHHBIE 3HAYEHHS pelaeTes MeTomoM anepxuHa. [TapamerpaMu, BANAIOWIAMY Ha npeaest YCTOMH-
YHBOCTH, SBJIAIOTCH OTHOLUCHHE TOJIUHH MOPHCTRIX CJIOEB, OTHOLUEHHE TOJIUKHBl NEPErOPOIKH K CyM-
MapHO# TOJIHHE TIOPHCTOTO CJIOR M OTHOILEHHE TETUIONPOBOLHOCTEH NOPHCTON Cpeabl H NEPErOPOAKH.
Pe3ynbTaThl IOKaBIBAOT, 4TO CHCTEMa HauboJiee yCTOHYMBA B ClIyvae, KOTIA [eperopoAKa pacnoioxkena
B entpe. Kpome Toro, npH yBETHYCHWH TOMNIUMHL! NEPErOPOIKH MM YMEHBLICHHAM ¢ NPOBOAMMOCTH
CHCTEMa CTaHOBHTCH BoJee yeToMuHBOM.



