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Abstract-The stability of two horizontal porous medium layers with a conductive partition is analysed 
by a Iinear stability theory. The upper cooled surface and the lower heated surface are taken to be 
isothermal and both are impermeable. The resulting eigenvalue problem is solved by a Galerkin method. The 
parameters affecting the stability limit arc the ratio of two porous layer thicknesses, the ratio of partition 
thickness to total porous layer thickness, and the ratio of porous medium conductivity to partition thermal 
conductivity. Results show the system is most stable when the partition is located in the middle. In addition, 
as the partition thickness increases or the partition conductivity decreases, the system becomes more stable. 

3. INTRODUCTION 

NATURAL convection in a porous medium between 
two parallel plates with uniform heating from below 
is of interest to physicists, geophysicists and engineers. 
There are several important technical applications, for 
example, porous insulation development and geo- 
thermal energy conversion. A large number of theor- 
etical and experimental studies on this subject has 
been made, see the review paper by Cheng [l]. The 
early work by Lapwood [2] determined the conditions 
for the onset of convection in a porous medium for a 
horizontal layer with isothermal boundaries and with 
im~~eable and permeable upper surfaces. Critical 
Rayieigh numbers Ra,,, = 4n2 (39.478) and 27.1 were 
obtained, respectively. The onset of natural con- 
vection in a porous layer under other boundary con- 
ditions has been discussed by Ribando and Torrance 
(31. The critical Rayleigh numbers are 27.1 and 17.7 
for a porous layer with a uniform heat flux from below 
and with im~~eabie and permeable upper surfaces, 
respectively. The effect of horizontal temperature 
gradients on the onset of free convection was inves- 
tigated by Weber [4], The analysis showed that the 
critical Rayleigh number is always higher than 4~‘. 

The convective heat transfer in Auid saturated 
porous beds either heated from below or heated by 
distributed sources was experimentally investigated 
by Buretta and Berman [5]. The critical Rayleigh num- 
bers for the onset of convection are estimated as 38.0 
for heating from below and 31.8 for distributed heat 
sources. The experiment by Close et al. [6] also con- 
firmed 47~’ as the critical Rayleigh number. 

This paper is concerned with the onset of natural 
convection in two horizontal porous medium layers 
with a conductive partition. The upper cooled surface 
and the lower heated surface are taken to be 
isothermal, and the fluid is governed by Darcy’s law. 
This type of problem for the porous medium has not 

been studied in the literature. This has motivated the 
present investigation. It should be noted that the cor- 
responding problem for a viscous fluid has been 
recently analysed by Catton and Lienhard [7]. The 
analysis of our paper is closely paralleled in ref. [7] ; 
however, there are some differences, arising from the 
governing equations and the boundary condition on 
the velocity that differ in the two problems. As might 
be expected, the results for a porous medium resemble 
those for a viscous fluid. Linear stability theory is used 
and the resulting eigenvalue problem is solved by a 
Galerkin method. The effects of the thickness, 
location and thermal conductivity of the partition 
on the onset of convection of two porous layers are 
examined. 

2. MATHEMATICAL ANALYSIS 

Figure 1 represents the physical model and the coor- 
dinate system. By applying Darcy’s law and the Bous- 
sinesq approximation, the governing equations for the 
physical model to be studied are 

aU+aO=o 
ax ay 

au av 
ay ax (2) 

P = Pail-m- To)1 (4) 

where u is the heat capacity ratio of the saturated 
porous medium to that of the fluid, c(, the effective 
thermal diffusivity of the medium, K an empirical 
constant called permeability and p the fluid coefficient 
of volume expansion. Equations (l)-(4) must be sat- 
isfied in both porous layer regions. 
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NOMENCLATURE 

A ratio of partition thickness to total porous Greek symbols 

layer thicknesses, &/(L, + L,) a, effective thermal diffusivity of the medium 

a dimensionless disturbance wave number, p fluid coefficient of volume expansion 

(274W 0 dimensionless amplitude of the 

B ratio of two porous layer thicknesses, temperature disturbance 

&IL, II disturbance wavelength 

ic 

gravitational acceleration V fluid kinematic viscosity 

effective porous media thermal P fluid density 

conductivity 0 heat capacity ratio of the saturated porous 

k, partition thermal conductivity medium to that of the fluid. 

K permeability 
L thickness of layer 

Ra Darcy’s Rayleigh number, defined in Subscripts 
equations (15) k variable or parameter in porous region 1 

Rar overall Rayleigh number, or 2 

KgB(T,-T,)(L,+L,+L,)Ia,V partition 
T temperature : reference state quantity for the Boussinesq 

T, temperature of the cold upper surface approximation. 

T, temperature of the hot lower surface 
u, v Darcy’s velocity in the x- and y-directions 
V dimensionless amplitude of the fluid Superscripts 

velocity disturbance I disturbance quantity 

x, y Cartesian coordinates * dimensionless quantity 

Y dimensionless y-coordinate. base state solution. 

The horizontal velocity u can be eliminated by In the partition we have 

cross-differentiating between equations (1) and (2), 
leading to :=E~($+$) (6) 

(5) 
where c(r is the thermal diffusivity of the partition. The 
boundary conditions for these equations are 

Cooled surface Tc 

Region 2 

I 
Lz,k e 

Region 1 1 
4 

I 
L,,ke 

-y3 ///////1//////11///////////////////////////////// 

Heated surface Th 

FIG. 1. The physical model and coordinate system. 
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UC% -Y3) = 4% -Y,) = VCGY,) = 4X,Y2) = 0 

Ttx, -YS) = T,,. T(x,yz) = r, (7) 

together with the matching of temperature and heat 
flux at the surfaces of the partition 

Y = -Y], T, = Tp, -k+= -k,,% (8) 

Y =yi, 7-2 = TP> -ke$ = -k$$‘. (9) 

The base state solutions for velocity and temperature 
are 

v=o (10) 

F, = T,,- 

-Y3 GyG -Y, (11) 

-YI GY GYI (12) 

T2 = Th- 
Th - Tc 

L2 LP k 
I+G+k,c 

To perform a linear stability analysis, we first per- 
turb the base state solutions and write 

T(x, Y, t) = F(Y) + T’(x, y, t) 

u(x,y, t) = o+v’(x,y, t). (14) 

On introducing the following transfo~ations : 

tk* = 

“q = x 
Lk’ 

x* = 2, 
LP 

t I 

t* = 

P L,2/a, Tz=g, 
k 

T;=&, k Ra = &MAT&, 
I 4” 

(15) 

note that k = 1,2 where AT, is the temperature differ- 
ence across porous region k, k = I,2 and Rak is the 
individual Darcy’s Rayleigh number. Then equations 
(2)-(6) are linearized, using standard procedures for 
the stability analysis. Thus, we find 

(17) 

a?r* a%y_al;: -E+-_-, 
ax;2 ayp*2 ay,* (18) 

Assuming solutions to equations (16)-(18) are of 
the form 

a$ = v,( Y,)eW*‘+i%&) 

Tz =: ~k(Yk)e(~~*~+ia~~) 

7”: z: @,( YP)e(%‘~+%&) (19) 

where a is the wave number of the disturbance in the 
x-direction, s the growth rate, and Vand 0 amplitudes 
of disturbances in the vertical velocity component and 
the temperature profiles, respectively. Substituting 
equations (19) into equations (16)-(18) and setting 
.r = 0 for neutral stability, we have : 

for region 1 
2 (D, -a:)V, = -a: Rat 6, (20) 

(D:-a:)@, = - V, (21) 

y =y*+y3_1 1 1 
L, 

2 and -46 Y, 62; 

for region 2 

(D: -a$)V, = -a:RazB, (22) 

(Dz-a:)@, = - V2 (23) 

Yz=y~--~--f and -i< Y,<i; 
2 

for the partition 

(D; -+,2)8, = 0 (24) 

YP=$ and -$<Y,,<i 
P 

where D, denotes d/d Yk, k = 1,2, p. 
The wave numbers are all related to a common 

disturbance wavelength 

a, = 2nL,/I, a1 = 2nL2/1, up = 2nL,/1. 

(25) 

The boundary conditions for equations (20)-(24) are 

V,(kj)=B,(-f)=f?,(+)=O, k=1,2 

and 

@I(:) = @,(- 1)? B@2(-- ‘iI = @,C9 

A(1 +B);D,B,(:) = D&J- ‘,) 
P 

A(1 +B);D,B,(-+) =D,O,(‘i) (26) 
P 

where A = L,/(L, + L2) is the ratio of the partition 
thickness to the total porous layer thickness and 
B = L,/L, is the ratio of two porous layer thicknesses. 

Equations (20)-(24) with equations (26) form an 
eigenvalue problem for Ra, and Ra, with A, B and 
k,/kp as parameters. 
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3. NUMERICAL METHOD 

The method of solution is that of Galerkin as 
described in Catton and Lienhard [7]. First, V, 
(k = 1,2) are expanded in terms of orthogonal func- 
tions which satisfy the boundary conditions on V,. 
We assume the velocities have the form 

where 

v, = CA;$;(Y,), k = 1,2 (27) 
I 

(28) 

The corresponding temperature profiles Bk can be 
obtained by substituting equation (27) into equations 
(21) and (23) 

6k = xAf4$(Y,)+D”cosh(a,Y,)+Eksinh(a,Y,) 

(29) 

where 

A. ok = &cos GnYk), i= 1,3,5... 

(30) 
1 

Tsin(inY,), i=2,4,6... 
(in) +al 

The disturbance temperature 0, in the partition is 
obtained directly from equation (24) 

eP = Mcosh (a,Y,)+Nsinh (u,Y,). (31) 

The constants M, N, Dk and Ek are found by 
satisfying the boundary conditions on 0 at the heated 
and cooled surfaces, and the matching conditions at 
the partition. The result is given as 

note that 

1 j=2 ask=1 

j=l ask=2 (32) 

where @” and @y are the same as those given in 
Catton and Lienhard [7]. The derivations are quite 
lengthy and are omitted here. The details are given in 
Tsai [8]. 

Substituting the derived expression for 0, and the 
assumed series for V, into equations (20) and (22) 
and then weighting and integrating over the regions 
(k = 1,2) yielding the following matrix equation : 

(33) 

where 

Table 1. The critical Rayleigh number of region 1, Ra,, 
for different integration interval points n with B = 1.0, 

k,/k, = 1.0 and N = 6 

A 11 21 3”1 41 51 

0.01 27.4017 27.4036 27.4037 27.4037 27.4037 
0.1 29.2496 29.2479 29.2479 29.2479 29.2479 
0.3 31.5995 31.5914 31.5914 31.5914 31.5914 
1.0 32.9077 32.9015 32.9014 32.9015 32.9015 

s l/2 

R= $,%f2dY2. 
- 112 

Noting that Ra, = B’Ra, and ai = B2a: and 
applying the requirement for non-trivial solutions, i.e. 
the determinant of the first matrix of equation (33) is 
zero, we obtain 

This has the form of a generalized eigenvalue problem, 
and, for a specified a,, Ra, is the eigenvalue. The 
choice of an N-term approximation for velocity yields 
a 2N x 2N matrix, the minimum eigenvalue of which 
is the desired Rayleigh number. To find the critical 
Rayleigh number for given values of A, B and k&,, 
first, the values of Ra, are calculated for several 
selected values of a,, and then a curve fitting is 
established through these points, and finally letting 
dRa, /da, = 0 to find the critical Rayleigh number. 

To check the numerical accuracy, we compute some 
cases for different shape function terms N and interval 
points n when equations (34) are integrated using 
Simpson’s 3/8 rule. The results for the critical Ray- 
leigh number of region 1, Ra ,, are presented in Tables 
1 and 2. It is seen that the results are accurate to at 
least three significant digits when a six-term shape 
function is used in conjunction with 21 point 
Simpson’s 3/8 rule of the integral. 

4. DISCUSSION OF RESULTS 

The critical Rayleigh numbers Ra,, Ra2 and Ra, 
are presented in Table 3 for 0.01 < A < 1.0, 
0.125 < B < 1.0, and 0 < k,/k, < 100, where 
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Table 2. The critical Rayleigh number of region 1, Ra,, for 
different shape function terms N with B = 1.0, k,/k, = 1.0 

andn=21 

A 4 ;: 8 

0.01 27.408 1 27.4036 27.403 1 
0.1 29.2483 29.2479 29.2477 
0.3 31.5923 31.5914 31.5910 
1.0 32.9122 32.9015 32.9011 

value of 47r2 (39.478) as obtained in ref. [2]. When 
k,/k, -+ co, as indicated by Catton and Lienhard [7] 
for a viscous fluid, the boundary condition at the 
partition approaches that for a constant heat flux. We 
calculated Ra, for k,/k, = 105, 106, 10’ with A = 1.0 
and B = 1.0 and obtained Ra, = 27.1654, 27.1652, 
27.1651, respectively, which are in good agreement 
with the value of 27.16 as obtained in ref. [3]. These 
comparisons also confirm the accuracy of our numeri- 
cal computation. 

Ra, = &$(T,--T,W, +&+LVGV 

is the overall critical Rayleigh number. The critical 

Rayleigh number of either layer is related to Ra, by 

Ra, = Ra,(l +E)2(l +A)(1 +A(k,/k,)) 

and 

Ra2 = Ra, B2. 

Results are given only for B < 1 because of the prin- 
ciple of symmetry. Calculations were also performed 
for B = 2,4 and 8, and the results were in good agree- 
ment with those for B = 0.5, 0.25 and 0.125. This 
confirms the principle of symmetry. 

Figures 2(a)-(d) show the variation of Ra7 as a 
function of conductivity ratio kc/k, for A = 0.01, 0.1, 
0.3 and 1.0, respectively, and for various values of B. 
It is seen that, for a given kc/k,, the porous layer is 
most stable when the partition is located in the middle. 
The rapid drop in Ra, as k,/k, increases from zero, 
results from decreasing damping of the thermal dis- 
turbance in the partition. This drop is smoother for 
larger values of A, since a thicker partition provides 
more damping for the disturbance. This trend is also 
observed for a viscous fluid [7]. As k,/k, increases, for 
a given B, the system becomes more stable because 
the thermal conductivity of the partition decreases, 
which in turn decreases the temperature gradient over 
each porous layer (for a fixed value of T, - Tc). 

In Table 3, ke/kp = 0 corresponds to the case when Figures 3(a)-(d) illustrate the variation of RaT as a 
the partition is a perfect conductor, i.e. isothermal, function of the conductivity ratio k,/kp for B = 0.125, 
and there is no temperature gradient in it. This reduces 0.25, 0.5 and 1.0, respectively, for selected values of 
to the classical BCnard problem for a porous medium. A. It is shown that, for a given conductivity ratio, 
The computed Ra, is 39.477 as compared to the exact the system becomes more stable as the ratio of the 

Table 3. The critical Rayleigh numbers Ra,, Ra, and Ra, 

B = 0.125 B = 0.25 B = 0.5 B= 1.0 
kc/k, Ra, Ra2 Ra, Ra, Ra, RaT Ra, Ra2 Ra, Ra, Ra, Ra, 

0.0 
0.2 
1.0 
5.0 

10.0 
100.0 

0.0 
0.2 
1.0 
5.0 

10.0 
100.0 

0.0 
0.2 
1.0 
5.0 

10.0 
100.0 

0.0 
0.2 
1.0 
5.0 

10.0 
100.0 

39.48 0.62 50.47 39.48 2.47 
36.22 0.57 46.39 34.84 2.18 
35.94 0.56 46.40 34.47 2.15 
35.16 0.55 47.19 33.84 2.12 
34.38 0.53 48.35 33.24 2.08 
29.76 0.47 76.10 29.45 1.84 

39.48 0.62 54.96 39.48 2.47 
36.78 0.57 52.24 36.27 2.27 
34.72 0.54 53.18 33.84 2.12 
31.25 0.49 65.26 30.76 1.92 
29.83 0.47 83.07 29.53 1.85 
27.54 0.43 421.79 27.51 1.72 

39.48 0.62 64.94 39.48 2.47 
37.21 0.58 64.89 37.14 2.32 
33.57 0.52 71.80 33.12 2.07 
29.52 0.46 121.41 29.36 1.84 
28.50 0.45 187.57 28.41 1.78 
27.32 0.43 1393.37 27.31 1.71 

39.48 0.62 99.94 39.48 2.47 
37.35 0.58 113.44 37.35 2.33 
32.93 0.51 166.72 32.93 2.06 
28.96 0.45 439.88 28.96 1.81 
28.13 0.44 783.22 28.13 1.76 
27.27 0.42 6971.36 27.27 1.70 

A = 0.01 
62.30 39.48 9.87 
55.10 33.38 8.35 
54.94 32.83 8.21 
56.08 32.31 8.08 
57.70 31.85 7.96 
92.95 29.04 7.26 

A=O.l 
67.86 39.48 9.87 
63.60 36.07 9.02 
63.98 32.87 8.22 
79.30 30.19 7.55 

101.53 29.16 7.29 
520.04 27.45 6.86 

A = 0.3 
80.20 39.48 9.87 
79.97 37.17 9.29 
87.45 32.91 8.23 

149.12 29.19 7.30 
230.85 28.30 7.08 

1719.58 27.29 6.82 

A = 1.0 
123.38 39.48 9.87 
140.05 37.35 9.34 
205.80 32.93 8.23 
542.96 28.96 7.24 
966.82 28.13 7.03 

8606.47 27.27 6.82 

89.73 39.48 39.48 159.51 
76.01 28.29 28.29 114.53 
75.34 27.40 27.40 111.82 
77.09 27.21 27.21 115.44 
79.63 27.19 27.19 120.83 

132.00 27.17 27.17 219.51 

97.72 39.48 39.48 173.72 
91.05 33.78 33.78 151.60 
89.51 29.24 29.24 141.50 

112.07 27.62 27.62 182.34 
144.32 27.40 27.40 241.12 
747.40 27.19 27.19 1315.96 

115.48 39.48 39.48 205.3 1 
115.26 36.64 36.64 201.99 
125.16 31.59 31.59 213.58 
213.44 28.32 28.32 368.22 
331.13 27.77 27.77 577.55 

2474.93 27.23 27.23 4389.12 

177.67 39.48 39.48 315.87 
201.67 37.34 37.34 358.44 
296.35 32.90 32.90 526.46 
781.75 28.93 28.93 1388.58 

1392.07 28.11 28.11 2473.37 
12 393.22 27.27 27.27 22 030.59 
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FIG. 2(a). The effect of partition location and conductivity upon the stability of the porous layers for 

A = 0.01. 
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FIG. 2(b). The effect of partition location and conductivity upon the stability of the porous layers for 
A = 0.1. 
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FIG. 2(c). The effect of partition location and conductivity upon the stabihty of the porous layers for 
A = 0.3. 
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FIG. 2(d). The effect of partition location and conductivity upon the stability of the porous layers for 
A = 1.0. 
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FIG. 3(a). The effect of partition thickness and conductivity upon the stability of the porous layers 

B = 0.125. 
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FIG. 3(b). The effect of partition thickness and conductivity upon the stability of the porous layers for 
B = 0.25. 
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FIG. 3(c). The effect of partition thickness and conductivity upon the stability of the porous layers for 
B = 0.5. 
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FIG. 3(d). The effect of partition thickness and conductivity upon the stability of the porous layers for 
B = 1.0. 
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partition thickness to total porous layer thickness, A, The results presented in this paper provide useful 
increases. As indicated before, this is due to the fact information for the analysis of insulating layers, 
that a thicker partition can greatly damp the dis- 
turbances. It is also seen that, for A = 0.01, i.e. thinner REFERENCES 
partition, the overall stability is not significantly 
affected by the partition conductivity. However, the 1, P. Cheng, Heat transfer in geothermal system, Adv. Heat 

overall stability is profoundly dependent on the par- 
Transfer 14, l-100 (1978). 

tition location as seen in Fig. 2(a). 
2. E. R. Lapwood, Convection of a fluid in a porous 

medium, Proc. Camb. Phil. Sot. 44,508-521 (1948). 
3. R. J. Ribando and K. E. Torrance. Natural convection 

5. CONCLUSION 

The stability of the onset of thermal convection of 4 
two horizontal porous medium layers with a con- 
ductive partition has been investigated using the linear 
stability theory. The qualitative results are similar to 

5 

those for a viscous flow in the absence of a porous 
medium. It is shown that the system is most stable 6. 
when the partition is located in the middle. In 
addition, the system is much more stable than that 
without partition even though the partition is quite 7, 
thin. For example, for A = 0.01, B = 1.0 and 
k,%, = 1, the overall critical Rayleigh number is 
111.82, which is much larger than 47c* for a system 
without partition. Results also indicate that as the 

*, 

partition thickness increases or the partition con- 
ductivity decreases, the system becomes more stable. 
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INSTABILITE THERMIQUE DE DEUX COUCHES POREUSES HORIZONTALES AVEC 
UNE PARTITION CONDUCTIVE 

R&urn&La stabilite de deux couches poreuses horizontales avec une partition conductive est analysbe 
par une thborie lintaire de stabilite. La surface supirieure froide et la surface inferieure chaude sent 
isothermes et impermtables. Le problime de valeurs propres est resolu par une methode de Galerkin. Les 
paramdtres agissant sur la limite de stabilite sont le rapport des epaisseurs des deux couches, le rapport de 
l’epaisseur de partition a l’epaisseur totale poreuse et le rapport de la conductivity du milieu poreux a celle 
de la partition thermique. Les rt%ultats montrent que le systtme est plus stable quand la partition est sit&e 
au milieu, En outre, lorsque l’ipaisseur de partition augmente ou lorsque la conductivite de partition 

decroit, le systeme devient plus stable. 

THERMISCHE rNSTABIL~T~T ZWEIER ~ORIZONTALER POR&SER SCHICHTEN MIT 
W~RMELEITENDER KONTAKTZONE 

Zusammenfassung-Es wird die Stabilitat zweier horizontaler porijser Stoffschichten mit warmeleitender 
Kontaktzone durch em lineares Stabilitatsverfahren untersucht. Die gektihlte obere Flache und die beheizte 
untere Oberll%che werden als Isothermenfliichen angenommen, wobei beide Flachen stoffundurchllssig 
sind. Das resultierende Eigenwertprobtem wird durchein Gderkin-Verfahren gel&t. Die Stabilinitsgrenze 
wird durch die folaenden Parameter b~influBt : das Verhaltnis zweier poriiser ~hichtdicken, das Verh~ltn~s 
von Kontaktschi~htdicke zu gesamter poriiser Schichtdicke und das Verhlltnis der W~~eleit~higkeiten 
von poriisem Medium und Kontaktschicht. Es wird gezeigt, daB bei mittiger Lage der Kontaktzone die 
besten Systemstabilitgten zu erwarten sind. Zusltzlich wird das System mit zunehmender Kontakt- 

schichtdicke oder abnehmender WIrmeleitfihigkeit der Kontaktzone stabiler. 
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TEl-UIOBkEI HEYCTOt+WiBOCTb ABYX TOPM30HTAJIbHbIX IIOPkiCTbIX CJIOEB C 
llPOBO,QJIJQE~ I-IEPEI-OPOflKOR 

hIlOTSiUIS-C IIOMOUWO TeOPHH nHHe~~0~ YCTOikWCTH aH~~~y~~ yCTO&'IHBOCTb LtByX fOpX- 

3ormmbmx rrop~czrhix cnoe~ c ~~Bo~~e~ ~e~ro~~o~. Bepxnsr 0~~eMa~ H H~HIIS iiarpe- 

BaeMax noBepxmmH nonararo?cn 8i30TepbfH~ecrmhfii n ifenpoHH~aebfbrm. IIonyveHHan 3anava Ha 

c06cmmme3~a~emin peluaeTcn MeTonoM ~anepraea.IlapaMeTpabiH, wnimou~~~ na npenen ycroii- 

'UiBOCTH,IBJIRIOTCR OTHOUIeHHe TOJWHH IIOpHCTblX CJIOeB, OTHOIUeHHe TOJUlIHHbl lleperOpOJ&KH L CyM- 

~ap~oZiTonuUl~enopHcTorocnoraoTnoureHHeTennonpoeo~ocTeinop~crolcpeabl~neperopomc~. 

Pe3ynbTaTbInoXabmaIoT,lITocHcTeMa HanBonee ycFo#rH~~Bc~~yYae, Kornaneperoponvapacnonoxeea 
B neziTpe. KpoMe Tore, npx yaemi~ewisi TOJIUWH~I neperopoxxH BJIH yr+ieHeuxeHsiH ee npo~o~~oc~~ 
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